Implementation of the Max-Miner algorithm for product recommendations in Café Lo Aja
Abstract
Café Lo Aja is a company that sells food and drinks. The business process carried out by this company is buying goods from suppliers and selling products to customers. Sales transaction data will produce heaps of data that get bigger and bigger, so that it can cause new problems. The purpose of this research is to make an application to process a sales transaction data so that it can produce information about consumer purchasing patterns which will be used to help the Cafe Lo Aja to make business decisions. This study uses Cafe Lo Aja sales transaction data in 2019 with the Data Mining Market Basket Analysis method and the Max-Miner Algorithm. This research produces data which is an association rule from a collection of sales transaction data. So that by knowing the pattern of purchasing these products, the cafe manager can predict future market needs that can take into account what stock items must be reproduced and what items should be reduced because of the small percentage of interested ones. By knowing the results of the association, the manager can adjust the layout of the product menu to be better because products that are often purchased will be placed close together. Suggested application development that can be done in further research is the system can be developed into a mobile application, so consumers can order products on their smartphone devices.
Keywords
Full Text:
PDF (Indonesian)References
. Firman, C. E. (2019). Penentuan Pola yang Sering Muncul untuk Penjualan Pupuk Menggunakan Algoritma Fp-growth. Informatika, 9(2), 1-8.
. Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
. Fauziah, S. (2018). Penerapan Metode FIFO Pada Sistem Informasi Persediaan Barang. Jurnal Teknik Komputer, 4(1), 98-108.
. Yanto, R., & Khoiriah, R. (2015). Implementasi Data Mining dengan Metode Algoritma Apriori dalam Menentukan Pola Pembelian Obat. Creative Information Technology Journal, 2(2), 102-113.
. Fahmi, I. (2018). Analisis Order Produk Toko Elektronik Menggunakan Teknik Data Mining. JURNAL SPEKTRO, 1(1), 42-46.
. Yuliana, W. (2018). Implementasi Algoritma Apriori untuk Mengoptimalkan Kombinasi Menu di Kane Pizzeria Bandung (Doctoral dissertation, UIN Sunan Gunung Djati Bandung).
. Thron, C., Tran, K., & Ali, A. (2019). A Low-Complexity, Low-Memory Frequent Itemset Mining Algorithm for Transactions With Sorted Items. Low-Memory Frequent Itemset Mining Algorithm for Transactions With Sorted Items (June 2, 2019).
. Riszky, R., & Sadikin, M. (2019). Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan. Jurnal Teknologi dan Sistem Komputer, 7(3), 103-108.
. Purnia, D. S., & Warnilah, A. I. (2017). Implementasi Data Mining Pada Penjualan Kacamata Menggunakan Algoritma Apriori. IJCIT (Indonesian Journal on Computer and Information Technology), 2(2).
. Nurhuda, A., Adytia, P., & Hidayat, R. (2019). Algoritma Apriori Untuk Rekomendasi Produk Pada Website Penjualan UD Rahmat Becled. Information Management for Educators and Professionals: Journal of Information Management, 4(1), 11-20.
. Djamaludin, I., & Nursikuwagus, A. (2017). Analisis Pola Pembelian Konsumen Pada Transaksi Penjualan Menggunakan Algoritma Apriori. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 8(2), 671-678.
. Al Syahdan, S., & Sindar, A. (2018). Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 1(2).
. Salam, A., & Sholik, M. (2018). Implementasi Algoritma Apriori untuk Mencari Asosiasi Barang yang Dijual di E-commerce OrderMas. Techno. com, 17(2), 158-170.
. Triayudi, A. (2017). Mengukur Tingkat Pembiayaan Kredit Pada PT. Trihamas Finance Menggunakan Algoritma Apriori-Data Mining. ProTekInfo (Pengembangan Riset dan Observasi Teknik Informatika), 4, 1-5.
. Sholihati, I. D., Irmawati, I., & Glory, D. (2017). Aplikasi Data Mining Berbasis Web Menggunakan Algoritma Apriori untuk Data Penjualan di Apotek. Prosiding SNATIKA, 4, 121-126.
DOI: http://dx.doi.org/10.30700/jst.v10i2.964
Article Metrics
Abstract view : 535 timesPDF (Indonesian) - 485 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 SISFOTENIKA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Badan Pengelola Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (SISFOTENIKA) STMIK Pontianak.
Jurnal Ilmiah SISFOTENIKA terindex di :
| |
SERTIFIKAT PENGHARGAAN :
Jurnal Ilmiah SISFOTENIKA Terakreditasi Peringkat Empat
Partners & Co-Organizers:
Jurnal Ilmiah SISFOTENIKA: STMIK Pontianak Online Journal ISSN Printed (2087-7897) - ISSN Online (2460-5344) licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional.