DATA MINING POTENSI AKADEMIK SISWA BERBASIS ONLINE
Abstract
Abstact: Problem-solving school difficulties in determining the classification of the student's academic potential can be sought through a system of student's academic potential predictive analysis. The results of predictive analysis are useful to carry out the enrichment program and the improvements program in preparation for the race of academics. Systems analysis of this prediction using data mining to determine the classification of students with academic potential classification models through techniques that form the decision tree of C4.5 algorithm. Predicted results are in the form of the rule of academic potential of students who subsequently entered into an online-based system of academic potential. The data on the student report book information academic potential of students who set and approved by the school. The rule is tested the prediction that yielding a prediction of 77.78% and then applied to other data that is testing the data as much as 20 report book data that generate 90% prediction rate. After the rules are received then put into an online-based system of academic potential.
Keywords: Academic Potential Students, Data Mining, Information Systems Online, C4.5 algorithm
Keywords
Full Text:
PDFReferences
Kusrini & Luthfi, E. 2009, Algoritma Data Mining. Andi Offset, Yogyakarta.
Hamzah, B. 2007, Teori Motivasi & Pengukurannya. Bumi Aksara, Jakarta.
Ernawati, Iin. 2008, Prediksi Status Keaktifan Studi Mahasiswa Dengan Algorithma
C5.0 dan K-Nearest Neighbor. Tesis Magister Sains, Institut Pertanian Bogor.
Moertini, S. 2007, Pengembangan Skalabilitas Algorithma klasifikasi C4.5 Dengan
Pendekatan Konsep Operator Relasi, Disertasi Doctoral, Institut Teknologi
Bandung.
Simarmata, J. 2010, Rekayasa WEB. Andi Offset,Yogyakarta.
Riduwan. 2009, Pengantar Statistika Sosial. Alfabeta, Bandung.
Puwanto, N. 1995, Psikologi Pendidikan. Rosdakarya, Bandung.
Arikunto, S. 2002, Prosedur Penelitian. Rineka Cipta, Jakarta.
Lee, F & Santana, J 2010, Data Mining : Meramalkan Bisnis Perusahaan. Elex Media
Komputindo, Jakarta.
Moertini, S 2002, Data Mining Sebagai Solusi. Integral. Vol. 7 (1), hh. 44-56.
Al-Radaideh, Q., Al-Shawakfa M., & Al-Najjar M. 2006, Mining Student Data Using
Decision Trees -5.
Varsha N., Singh A., Singh D.,& Jain 2010, Result Analysis Using Classification
Techniques. International Journal of Computer Apllications. Vol. 1 No. 22. pp.
-26.
Moertini, S.,2003, Towards The Use Of C4.5 Algorithm For Classifying Banking
Dataset., Integral. Vol. 8 (2), pp. 105-115.
Gambetta, W. 2003, Pohon Keputusan, Materi Kuliah Informatika, IF5032, Institut
Teknologi Bandung.
Tan, Stenbach & Kumar 2004, Pengantar Data Mining, Catatan Kuliah Untuk Bab 4,
Universitas Gunadarma.
DOI: http://dx.doi.org/10.30700/jst.v2i1.61
Article Metrics
Abstract view : 374 timesPDF - 609 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 SISFOTENIKA
Badan Pengelola Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (SISFOTENIKA) STMIK Pontianak.
Jurnal Ilmiah SISFOTENIKA terindex di :
| |
SERTIFIKAT PENGHARGAAN :
Jurnal Ilmiah SISFOTENIKA Terakreditasi Peringkat Empat
Partners & Co-Organizers:
Jurnal Ilmiah SISFOTENIKA: STMIK Pontianak Online Journal ISSN Printed (2087-7897) - ISSN Online (2460-5344) licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional.