Kohonen Network Modeling for Asteroid Name Recognition

Eza Budi Perkasa, Benny Wijaya, Jerry Jamhari

Abstract


A small number of asteroids have already had their own permanent names. However, tracking the names of asteroids that have been used before is an impractical work because there are thousands of names that must be traced one by one. This research intends to minimize the search burden of many asteroid name data using the Kohonen network. By using the Kohonen network, it is sufficient to do training on the sample data provided which is far less than the actual data. The result of this training is then used to obtain the number of asteroid names that are successfully identified by the Kohonen network. The result can also be used to propose a new asteroid name so that thestatus of acceptance of the proposed name can be determined. Based on the results of the training on the sample data, the training result is getting better as the learning rate increases. However, when tested with real data, the overall result that is not satisfactory is obtained because the level of recognition is only 49.78%. From the test result, it is also found that there is no linear relationship between the level of learning rate and the number of names that were successfully identified. Further research that can be done are the inclusion of non-asteroid training data, changing Kohonen network parameters, or using other recognition methods.

Keywords


Kohonen network; string recognition; name recognition; asteroid

Full Text:

PDF (Indonesian)

References


Kusumadewi, S., 2003, Artificial Intelligence (Teknik dan Aplikasinya), Graha Ilmu,Yogyakarta.

Sutojo, T., Mulyanto, E., dan Suhartono, V., 2011, Kecerdasan Buatan, ANDI, Yogyakarta.

Minor Planet Center, 2018, Minor Planet Names: Alphabetical List, https://minorplanetcenter.net/iau/lists/MPNames.html, diakses tgl 28 Januari 2019.

Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., and Boiko, O.O., 2017, A Neuro-Fuzzy Kohonen Network for Data Stream Possibilistic Clustering and Its Online Self-Learning Procedure, Applied Soft Computing Journal, vol 68, hal 710-718.

Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., and Boiko, O.O., 2016, An Ensemble of Adaptive Neuro-Fuzzy Kohonen Networks for Online Data Stream Fuzzy Clustering, International Journal of Modern Education and Computer Science, no 5, vol 8, hal 12-18.

Shuai, C., Yang, H., and Gong, Z., 2018, Research on Intrusion Detection Based on Kohonen Network and Support Vector Machine, AIP Conference Proceedings, Busan, April 14-15.

Azmi, Z., Taufik, F., dan Susilo, B., 2018, Implementasi Jaringan Kohonen Dalam Pengenalan Citra Huruf Aksara Jawa, Jurnal SAINTIKOM, no 2, vol 17, hal 214-217.

Michael, A., 2016. Pengenalan Plat Kendaraan Berbasis Android Menggunakan Viola Jones dan Kohonen Neural Network. Jurnal Ilmiah ILKOM, no 2, vol 8, hal 95-102.

Mohammed, A.A., 2018, Hybrid Watermark System for Color Images based on DCT, DWT and Kohonen Network, Diyala Journal For Pure Sciences, no 1, vol 15, hal 74-84.

Halim, N.N. dan Widodo, E., 2017, Clustering Dampak Gempa Bumi di Indonesia Menggunakan Kohonen Self Organizing Maps, Prosiding SI MaNIs, Malang, 31 Juli.

Li, Y., Cheng, G., Chen, X., and Liu, C., 2019, Coal-rock interface recognition based on permutation entropy of LMD and supervised Kohonen neural network, Current Science, no 1, vol 116, hal 96-103.

Tambunan, M.R.L., 2018, Kombinasi Algoritma Kohonen Sebagai Clustering dan Metode Resilent Backpropagation Untuk Mempercepat Hasil Clasification, Tesis, Fakultas Ilmu Komputer dan Teknologi Informasi, Univ. Sumatera Utara, Medan.

Sameer, F. and Abu Bakar, M.R., 2017, Modified Kohonen Network Algorithm for Selection of the Initial Centers of Gustafon-Kessel Algorithm in Credit Scoring, Pertanika Journal Science & Technology, no 1, vol 25, hal 77-90.

Siregar, S.D., Lestari, Ernala, I., Simarmata, D.P., dan Nainggolan, A.S., 2019, Pencocokan Foto Berdasarkan Wajah Dengan Menggunakan Metode Kohonen, Journal Of Informatic Pelita Nusantara, no 1, vol 4, hal 1-7.

Krulický, T., 2018, Using Kohonen networks in the analysis of transport companies in the Czech Republic, SHS Web of Conferences, Beijing, November 8-9.

Minor Planet Center, 2014, How Are Minor Planets Named?, https://minorplanetcenter.net/iau/info/HowNamed.html, diakses tgl 28 Januari 2019.




DOI: http://dx.doi.org/10.30700/jst.v10i2.512

Article Metrics

Abstract view : 336 times
PDF (Indonesian) - 379 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 SISFOTENIKA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Badan Pengelola Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (SISFOTENIKA) STMIK Pontianak.

 

Jurnal Ilmiah SISFOTENIKA terindex di :


   

   

  

    

    

    

   

 

 

 

ISSN Printed : 2087-7897

ISSN Online : 2460-5344


SERTIFIKAT PENGHARGAAN :

Jurnal Ilmiah SISFOTENIKA Terakreditasi Peringkat Empat

 

Partners & Co-Organizers:




Lisensi Creative Commons

Jurnal Ilmiah SISFOTENIKA: STMIK Pontianak Online Journal ISSN Printed (2087-7897) - ISSN Online (2460-5344) licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional. Flag Counter

View My Stats>