Cluster Evaluation Weighing Intercomparison Data with Self Organizing Maps Algorithm

Arif Fajar Solikin, Kusrini Kusrini, Ferry Wahyu Wibowo

Abstract


Laboratory intercomparison is one of method to determine the ability and assess the performance of a laboratory. Laboratory performance can be seen from the evaluation of the En ratio’s value, which is a comparison between the difference in the value test of the participant's laboratory with reference’s laboratory and the difference in the square root of the uncertainty value form participant's laboratory and reference’s laboratory. The laboratory is declared equivalent if the En value is in the range of En ≤|1|. Intercomparisons evaluation can also be done by utilizing one of the data mining technologies in the form of clustering. Clustering is done by using self-organizing maps algorithm, which is an unsupervised learning algorithm. The advantage of clustering in evaluating intercomparation data lies in its ability to group data into several clusters that have closeness or similarity in characteristics / traits / characters of data, making it easier for intercomparation organizers to provide analytical recommendations for improving laboratory performance. Intercomparation data are grouped based on the homogeneity between members in one cluster and heterogeneity among the clusters. To get the best number of clusters, evaluation is carried out through three testing methods, pseudo-F statistic, icdrate and davies bouldin index. From several experiments, the largest pseudo-F statistic value was 167.53, the smallest icdrate value was 0.071 and the smallest DBI value was 0.053 for the 1000 g artifact. As for the 200 g artifact, the largest pseudo-F statistic value was 104.86, the smallest icdrate value was 0.289 and the smallest DBI value was 0.306

Keywords


Cluster; Evaluation; Intercomparation;

Full Text:

PDF (Indonesian)

References


ISO/IEC. (2010). Conformity assessment--General requirements for proficien‐cy testing. International Organization for Standardization Geneva.

Voiculescu, R. M., Olteanu, M. C., & Nistor, V. M. (2013). Design and operation of an interlaboratory comparison scheme. Nuclear Fusion Journal.

Tim Penyusun (2021). Program Interkomparasi Standar Massa - Protokol Interkomparasi, BSML Regional II.

Irwansyah, E., & Faisal, M. (2015). Advanced Clustering: Teori dan Aplikasi. Edisi 1. Deepublish: Yogyakarta

Hendayanti, N. P. N., Putri, G. A. M. A., & Nurhidayati, M. (2018). Ketepatan Klasifikasi Penerima Beasiswa STMIK STIKOM Bali dengan Hybrid Self Organizing Maps dan Algoritma K-Mean. Jurnal Varian, 2(1), 1-7.

Purbasari, I. Y., Puspaningrum, E. Y., & Putra, A. B. S. (2020, July). Using Self-Organizing Map (SOM) for Clustering and Visualization of New Students based on Grades. In Journal of Physics: Conference Series (Vol. 1569, No. 2, p. 022037). IOP Publishing.

Kania, S., Rachmatin, D., & Dahlan, J. A. (2018). Program Aplikasi Pengelompokan Objek Dengan Metode Self Organizing Map Menggunakan Bahasa R. Jurnal EurekaMatika, 7(2), 17-29.

Firmansyah Dese Narfa; Adinugroho Sigit; Rahayudi Bayu, 2019, Pengelompokan Wilayah Berdasarkan Kesejahteraan Sosial Menggunakan Algoritma Self-Organizing Maps Dengan Perbaikan Missing Value K-Nearest Neighbors, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN: 2548-964X Universitas Brawijaya Vol. 3, No. 7, Juli 2019, hlm. 7205-7213.

Lakshminarayanan, S. (2020). Application of self-organizing maps on time series data for identifying interpretable driving manoeuvres. European transport research review, 12(1), 1-11.

Tian, J., & Gu, M. (2019). Subspace clustering based on self-organizing map. In Proceeding of the 24th International Conference on Industrial Engineering and Engineering Management 2018 (pp. 151-159). Springer, Singapore.

Putri, M. M. (2015). Pengelompokan Kabupaten/Kota di Jawa Timur Berdasarkan Indikator Kesehatan Masyarakat Menggunakan Metode Kohonen SOM dan K-Means (Skripsi, Jurusan Statistika Fakultas MIPA, Institut Technology Sepuluh Nopember).

Sitompul, B. J. D. (2018). Peningkatan hasil evaluasi clustering davies-bouldin index dengan penentuan titik pusat cluster awal algoritma k-means. Tesis, S2 Teknik Informatika FIKTI USU, Medan.

Asriny, N. I., Ramadhanty, D. R., Izzati, M. D., Putra, M. L. P., Shofura, A., Albi, C. U., & Widodo, E. (2021, February). Comparison of K-Medoids and Self Organizing Maps Algorithm in Grouping Hydrometeorological Natural Disasters in Java Island. In IOP Conference Series: Materials Science and Engineering (Vol. 1077, No. 1, p. 012008). IOP Publishing.




DOI: http://dx.doi.org/10.30700/jst.v11i2.1153

Article Metrics

Abstract view : 148 times
PDF (Indonesian) - 275 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 SISFOTENIKA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Badan Pengelola Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (SISFOTENIKA) STMIK Pontianak.

 

Jurnal Ilmiah SISFOTENIKA terindex di :


   

   

  

    

    

    

   

 

 

 

ISSN Printed : 2087-7897

ISSN Online : 2460-5344


SERTIFIKAT PENGHARGAAN :

Jurnal Ilmiah SISFOTENIKA Terakreditasi Peringkat Empat

 

Partners & Co-Organizers:




Lisensi Creative Commons

Jurnal Ilmiah SISFOTENIKA: STMIK Pontianak Online Journal ISSN Printed (2087-7897) - ISSN Online (2460-5344) licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional. Flag Counter

View My Stats>