Training Introduction to Digital Image Processing Techniques in The Medical Field
Abstract
Keywords
Full Text:
PDFReferences
Zhang, J., Li, C., Rahaman, M. M., Yao, Y., Ma, P., Zhang, J., ... & Grzegorzek, M. (2021). A comprehensive review of image analysis methods for microorganism counting: from classical image processing to deep learning approaches. Artificial Intelligence Review, 1-70.
Khalifa, N. E., Loey, M., & Mirjalili, S. (2021). A comprehensive survey of recent trends in deep learning for digital images augmentation. Artificial Intelligence Review, 1-27.
Pimple, K. M., Likhitkar, P. P., & Pande, S. (2022). Convolutional Neural Networks for Malaria Image Classification. In Proceedings of Data Analytics and Management (pp. 459-470). Springer, Singapore.
Khatkar, M., Atal, D. K., & Singh, S. (2021, August). Identification of Malaria Parasite Using Soft Computing Techniques. In 2021 Asian Conference on Innovation in Technology (ASIANCON) (pp. 1-7). IEEE.
Jusman, Y., Pusparini, A., Chamim, A. N. N., & Kanafiah, S. N. A. M. (2021, February). Comparison of Malaria Parasite Image Segmentation Algorithm Using Thresholding and Watershed Method. In Journal of Physics: Conference Series (Vol. 1783, No. 1, p. 012092). IOP Publishing.
Apriliani, A., Siregar, P. A., & Tarigan, A. A. (2021). Analysis of Risk Factors Malaria Incidence in Indonesia (data analysis of riskesdas 2018). International Archives of Medical Sciences and Public Health, 2(1).
Akindele, S. T., Bilesanmi–Awoderu, J. B., Otuewu, O. O., & Adetunji, A. M (2021). Comparative Analysis of Malaria Diagnosis Using Microscopy and Rapid Diagnostic Test (RDT) in Ijebu-Igbo North Local Government, Southwest Nigeria.
Manning, K., Zhai, X., & Yu, W. (2022). Image analysis and machine learning-based malaria assessment system. Digital Communications and Networks, 8(2), 132-142.
Kittichai, V., Kaewthamasorn, M., Thanee, S., Jomtarak, R., Klanboot, K., Naing, K. M. & Boonsang, S. (2021). Classification for avian malaria parasite Plasmodium gallinaceum blood stages by using deep convolutional neural networks. Scientific reports, 11(1), 1-10.
Jabbar, M. A., & Radhi, A. M. (2022). Diagnosis of Malaria Infected Blood Cell Digital Images using Deep Convolutional Neural Networks. Iraqi Journal of Science, 380-396.
Abdurahman, F., & Fante, K. A. (2022). Tile-based microscopic image processing for malaria screening using deep learning approach.
Singh, M., Khurana, R., Jain, P., & Verma, A. Malaria Cell Detection Using Machine Learning.
Bashir, A., Mustafa, Z. A., Abdelhameid, I., & Ibrahem, R. (2017, January). Detection of malaria parasites using digital image processing. In 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE) (pp. 1-5). IEEE.
DOI: http://dx.doi.org/10.30700/jm.v3i1.1282
Article Metrics
Abstract view : 323 timesPDF - 760 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 JUDIMAS

This work is licensed under a Creative Commons Attribution 4.0 International License.
JUDIMAS (Jurnal Inovasi Pengabdian Kepada Masyarakat) terindex di :