Measuring Students' Level of Understanding in Programming Courses with the K-Means Clustering Algorithm

Ninik Tri Hartanti

Abstract


The structured programming course is one of the courses that must be taken by second semester students at Amikom University Yogyakarta. This course is a prerequisite course for the data structure course in the fourth semester, so evaluation materials are needed for the results of the learning process. These results are identical to the student's ability to understand the course material during the learning period, so the evaluation results are needed to determine whether or not students are eligible to continue to the next semester. The purpose of the study was to measure the level of understanding of students in receiving programming material. The research method is carried out by applying the Elbow method and the K-Means clustering algorithm, so that a group will be formed from each class whose category can be determined based on the level of student ability. The clustering process involves 5 criteria, namely assignment scores, UTS, UAS, Final Project and attendance. The number of clusters determined is 3, cluster1 for the highest average value, cluster2 for the average value enough, and cluster3 for the lowest average value. Based on the results of calculations using K-Means clustering, it was found that in cluster1 there were 17 students in class A and B, and 18 students in class C. Then in cluster3 there were 5 students in class A, 7 students in class B and 9 students in class C.

Keywords


K-Means; clustering; evaluation; final project

Full Text:

PDF (Indonesian)

References


I. Magdalena, H. N. Fauzi, R. Putri, and U. M. Tangerang, “PENTINGNYA EVALUASI DALAM PEMBELAJARAN DAN AKIBAT MEMANIPULASINYA,” Pendidik. dan Sains - stitpn, vol. 2, pp. 244–257, 2020, doi: https://doi.org/10.36088/bintang.v3i2.

S. Suarga, “Hakikat, Tujuan Dan Fungsi Evaluasi Dalam Pengembangan Pembelajaran,” J. Inspiratif Pendidik., vol. 8, no. 1, pp. 327–338, 2019, doi: 10.24252/ip.v8i1.7844.

I. L, “Evaluasi Dalam Proses Pembelajaran,” Adaara J. Manaj. Pendidik. Islam, vol. 9, no. 2, pp. 920–935, 2019, doi: 10.35673/ajmpi.v9i2.427.

N. T. Hartanti, “Metode Elbow dan K-Means Guna Mengukur Kesiapan Siswa SMK Dalam Ujian Nasional,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 82–89, 2020, doi: 10.25077/teknosi.v6i2.2020.82-89

G. Abdurrahman, “Clustering Data Ujian Tengah Semester ( UTS ) Data Mining,” J. Sist. Teknol. Inf. Indones., vol. 1, no. 2, pp. 71–79, 2016.

R. Nainggolan, “Optimasi Performa Cluster K-Means Menggunakan Sse,” METHOMIKA J. Manaj. Inform. Komputerisasi Akunt., vol. 2, no. 2, pp. 103–108, 2018.

Y. Muharmi, “Pengelompokan Siswa Berdasarkan Faktor-faktor Yang Mempengaruhi Keberhasilan Siswa dalam Belajar Menggunakan Metode Clustering K-Means,” J. Teknol. Inf. dan Pendidik., vol. 9, no. 1, pp. 1–12, 2016, doi: https://doi.org/10.24036/tip.v9i1.56.

Y. Syahra, “Penerapan Data Mining Dalam Pengelompokkan Data Nilai Siswa Untuk Penentuan Jurusan Siswa Pada SMA Tamora Menggunakan Algoritma K-Means Clustering,” J. SAINTIKOM (Jurnal Sains Manaj. …, vol. 17, no. 2, pp. 228–233, 2018, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jis/article/view/70.

R. Noveandini and M. Sri Wulandari, “Analisis Clustering K-Means Pada Pengelompokkan Hasil Tracer Study Sebagai Media Informasi Dalam Pengembangan Kurikulum Program Studi,” Semin. Nas. SeNTIK, vol. 3, p. 133, 2019, doi: http://dx.doi.org/10.32409/jikstik.3.1.254

N. Putu, E. Merliana, and A. J. Santoso, “Analisa Penentuan Jumlah Cluster Terbaik pada Metode K-Means,” Pros. Semin. Nas. MULTI DISIPLIN ILMU CALL Pap. UNISBANK, pp. 978–979, 2015

A. T. Rahman, Wiranto, and A. Rini, “Coal Trade Data Clustering Using K-Means (Case Study Pt. Global Bangkit Utama),” ITSMART J. Teknol. dan Inf., vol. 6, no. 1, pp. 24–31, 2017, doi: 10.20961/ITS.V6I1.11296.

R. K. Dinata, S. Safwandi, N. Hasdyna, and N. Azizah, “Analisis K-Means Clustering pada Data Sepeda Motor,” INFORMAL Informatics J., vol. 5, no. 1, p. 10, 2020, doi: 10.19184/isj.v5i1.17071




DOI: http://dx.doi.org/10.30700/jst.v12i1.1210

Article Metrics

Abstract view : 196 times
PDF (Indonesian) - 200 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 SISFOTENIKA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Badan Pengelola Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (SISFOTENIKA) STMIK Pontianak.

 

Jurnal Ilmiah SISFOTENIKA terindex di :


   

   

  

    

    

    

   

 

 

 

ISSN Printed : 2087-7897

ISSN Online : 2460-5344


SERTIFIKAT PENGHARGAAN :

Jurnal Ilmiah SISFOTENIKA Terakreditasi Peringkat Empat

 

Partners & Co-Organizers:




Lisensi Creative Commons

Jurnal Ilmiah SISFOTENIKA: STMIK Pontianak Online Journal ISSN Printed (2087-7897) - ISSN Online (2460-5344) licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional. Flag Counter

View My Stats>