Implementation of Apriori Algorithm for Determining Product Purchase Patterns

Nindy Devita Sari, Bambang Soedijono W A, Asro Nasiri

Abstract


In this study, the implementation of Data Mining association method using Apriori algorithm to determine product purchase pattern. Data obtained from the sales transaction data in the Toko Jaya Putra Bumi Agung in the form of a purchase note that will then be implemented using Apriori algorithm. The data mining technique used is the association rule method to know the pattern between items one and other items using support and confidence. In this study of the calculation process with Apriori algorithm obtained minimum value of support 50% and minimum confidence value 70% then resulting tendency of products purchased by consumers ie if buying cooking oil then buy eggs with confidence 75%. If buying Sumendo coffee then buy sugar with confidence 77.8%. This research is expected to be helpful and useful for the owner of Toko Jaya Putra Bumi Agung to predict and analyze the combinations of what kinds of products are often purchased by consumers simultaneously. For further research need to be developed again by combining other data mining algorithms. Preferably the use of datasets that are used will be better to use larger datasets so that they can obtain higher accuracy values.

Keywords


Apriori, Association Rule, Data Mining, Item,

Full Text:

PDF (Indonesian)

References


Kusrini, E. T. (2009). Artificial Intelligent (Teknik dan Aplikasinya). Yogyakarta: Graha Ilmu. p.109.

Kusrini, E. T. (2009). Algoritma Data Mining. Yogyakarta: Andi.

Gunadi Goldie, D. I. (2012). Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth (FP-Growth) : Studi Kasus Percetakan PT. Gramedia. Jurnal TELEMATIKA MKOM, Vol. 4, No. 1, 118-132.

Andre Valerian, L. H. (2018). Implementasi Algoritma Apriori Untuk Prediksi Stok Peralatan Tulis Pada Toko Xyz. Jurnal Ilmiah Teknologi Informasi Terapan Volume V, No. 1, 18-22.

Nur Fitrina, K. R. (2018). Penerapan Algoritma Apriori Pada Sistem Rekomendasi Barang Di Minimarket Batox. Jurnal TIKomSiN, Vol. 6, No. 2, 21-27.

Rachmad Febrian, F. D. (2018). Analisis Pola Pembelian Obat Di Apotek Uii Farma Menggunakan Metode Algoritma Apriori. Seminar Nasional Teknologi Informasi dan Multimedia, 49-54.

Ali Ikhwan, S. D. (2015). Penerapan Data Mining dengan Algoritma Fp-Growth untuk Mendukung Strategi Promosi Pendidikan ( Studi Kasus Kampus STMIK Triguna Dharma). Jurnal Ilmiah Saintikom, 211-226.

Sani Susanto, D. S. (2010). Pengantar Data Mining Menggali Pengetahuan dari Bongkahan Data. Penerbit Andi.

Zaki, M. J. (2000). Generating Non-Redundant Association Rules. in Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, 34-43.

Henando, L. (2019). Algoritma Apriori Dan Fp-Growth Untuk Analisa Perbandingan Data Penjualan Leptop Berdasarkan Merk Yang Diminati Konsumen (Studi Kasus : Indocomputer Payakumbuh). JURNAL J – CLICK Jurnal Sistem Informasi Dan Manajemen Informatika Vol. 6 No. 1, 1-17.

Nugroho Wandi, R. A. (2012). Pengembangan Sistem Rekomendasi Penelusuran Buku dengan Penggalian Association Rule Menggunakan Algoritma Apriori (Studi Kasus Badan Perpustakaan dan Kearsipan Provinsi Jawa Timur). JURNAL TEKNIK ITS Vol. 1, 445-449.

Robi Yanto, R. K. (2015). Implementasi Data Mining dengan Metode Algoritma. Citec Journal, Vol. 2, No. 2, 102-113.

Badrul, M. (2016). Algoritma Asosiasi Dengan Algoritma Apriori Untuk Analisa Data Penjualan. Jurnal Pilar Nusa Mandiri Vol.XII, No.2, 121-129.

Jiawei Han, M. K. (2006). Data Mining Concept and Techniques. Elsevier Inc: United States of America.




DOI: http://dx.doi.org/10.30700/jst.v11i1.1033

Article Metrics

Abstract view : 487 times
PDF (Indonesian) - 257 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 SISFOTENIKA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Badan Pengelola Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (SISFOTENIKA) STMIK Pontianak.

 

Jurnal Ilmiah SISFOTENIKA terindex di :


   

   

  

    

    

    

   

 

 

 

ISSN Printed : 2087-7897

ISSN Online : 2460-5344


SERTIFIKAT PENGHARGAAN :

Jurnal Ilmiah SISFOTENIKA Terakreditasi Peringkat Empat

 

Partners & Co-Organizers:




Lisensi Creative Commons

Jurnal Ilmiah SISFOTENIKA: STMIK Pontianak Online Journal ISSN Printed (2087-7897) - ISSN Online (2460-5344) licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional. Flag Counter

View My Stats>