Use of Fulltext Indexing to Improve Data Search Efficiency in MYSQL Databases

Ahmad Hajar, Ema Utami, Hanif Al Fatta


 The process of searching for data is one of the needs of the system that is needed. With the more data, the search process will take longer. There are many ways to speed up the data search process, one of which is by utilizing the Full text index feature in the MySQL database. In this study, a search query will be tested on tables that have been indexed and on tables that have not been indexed. Researchers use the like operator to search for data on tables that are not indexed. Meanwhile, in the table given the index, the researcher uses a full text search with the match against syntax. The results of this study indicate that the full text search on a table that has been given an index is faster than a table that is not indexed. When the number of data is 466,000, searching in a non-index table takes 2,638.97 milliseconds. Meanwhile, the indexed table takes 89.14 milliseconds. Then the impact of giving an index to the table is that the insert process takes longer than the table that is not indexed. In the product index table when the data is 466,000, the insert time is 6,560.69 milliseconds. While the product non index table is 420.96 milliseconds. In future research, it is expected to look for other query testing methods and find out the accuracy between like operator and match against.


Query Testing; Query Speed Test; Fulltext Index; Mysql; Laravel;

Full Text:

PDF (Indonesian)


B. Sri Sai Krishna Chaitanya, D. Ajay Kumar Reddy, B. Pavan Sai Eshwar Chandra, A. Bala Krishna, Remya R. K. Menon, 2019, Full-text Search Using Database Index:

Aleksandar Kelec, Igor Dujlovic, Nikola Obradovic, 2019, One approach for full-text search of files in MongoDB based systems:

Erna Selviyanti, Hamidillah Ajie, Widodo, 2019, Pengembangan Sistem Pencarian Karya Akhir Berdasarkan Abstrak Menggunakan Full-Text Searching Di Sistem Informasi Perpustakaan Jurusan Teknik Elektro Universitas Negeri Jakarta:

Kadek Teguh Wirawan, I Made Sukarsa, I Putu Agung Bayupati, 2019, Balinese Historian Chatbot using Full-Text Search and Artificial Intelligence Markup Language Method:

Hokianto Candra, Rino, Riki, 2020, Designing a Chatbot Application for Student Information Centers on Telegram Messenger Using Fulltext Search Boolean:

T. A. Hryhorova, O. S. Moskalenko, 2018, Enhanced access to training information in E-learning systems:

Mysql Team, MySQL 8.0 Reference Manual - Including MySQL NDB Cluster 8.0, diakses 21 Juni 2022

Ridho Pamungkas, 2018, Optimalisasi Query Dalam Basis Data My Sql Menggunakan Index:

Komang Rinartha, Wayan Suryasa, Luh Gede Surya Kartika. 2018, Comparative Analysis of String Similarity on Dynamic Query Suggestions:

Zudha Pratama, Yans Safarid Hudha, M Lukman Prayoghi, 2018, Analisa Perbandingan Query Pencarian Menggunakan Fungsi Match-Against Pada MySQL Dengan Tabel Kamus:

I. Pozniak-Koszalka and M. Helwich. 2005, Experimentation System for Evaluating MySQL Database Management System Efficiency:


Article Metrics

Abstract view : 191 times
PDF (Indonesian) - 149 times


  • There are currently no refbacks.

Copyright (c) 2022 SISFOTENIKA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Badan Pengelola Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (SISFOTENIKA) STMIK Pontianak.


Jurnal Ilmiah SISFOTENIKA terindex di :











ISSN Printed : 2087-7897

ISSN Online : 2460-5344


Jurnal Ilmiah SISFOTENIKA Terakreditasi Peringkat Empat


Partners & Co-Organizers:

Lisensi Creative Commons

Jurnal Ilmiah SISFOTENIKA: STMIK Pontianak Online Journal ISSN Printed (2087-7897) - ISSN Online (2460-5344) licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional. Flag Counter

View My Stats>