Price Prediction of Vegetable Oil Kaggle Data with Multiple Linear Regression and Backpropagation

Nur Nafi'iyah, Nela Nevrivanti Aulia

Abstract


Indonesia has an abundant agricultural sector. The agricultural sector is very abundant, one of which is coconut oil, palm oil. Oil prices are often uncontrolled fluctuations that cannot be determined based on parameters. The ups and downs of oil prices can be seen clearly from graphs and tables of previous data. Farmers who plant coconut and oil palm often experience losses due to the high cost of planting, but when harvesting the price drops. In order to reduce the losses experienced by farmers, we propose a vegetable oil price prediction system. The aim of this research is to predict the price of vegetable oil, starting from palm oil, coconut oil, fish oil, soybean oil, peanut oil, and sunflower oil by using multiple linear regression and Backpropagation methods. The data used is from Kaggle, with year and month input variables, from 2006 to 2018. The total dataset is 153 lines, used training 110 lines, and testing 43 lines. The results of our prediction of accuracy testing with MAPE, the average accuracy value of the multiple linear regression method is 0.385, and the average accuracy value of the Backpropagation method is 0.209. Based on the MAPE accuracy results, the multiple linear regression algorithm and Backpropagation show the best Backpropagation

Keywords


vegetable oil; prediction; linear regression; Backpropagation;

Full Text:

PDF (Indonesian)

References


Dengen, Christin Nandari, Kusrini Kusrini, and Emha Taufiq Luthfi. 2020. “Implementasi Decision Tree Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu.” Sisfotenika 10(1):1. doi: 10.30700/jst.v10i1.484.

Febry Yuni Mulato. 2016. “Penerapan Sistem Fuzzy Untuk Prediksi Harga Kelapa Sawit Artikel.” Nasioanal.

Fitri Boy, Ahmad. 2020. “Implementasi Data Mining Dalam Memprediksi Harga Crude Palm Oil (CPO) Pasar Domestik Menggunakan Algoritma Regresi Linier Berganda (Studi Kasus Dinas Perkebunan Provinsi Sumatera Utara).” Journal of Science and Social Research 4307(2):78–85.

Haryadi, Deny, and Rila Mandala. 2019. “Prediksi Harga Minyak Kelapa Sawit Dalam Investasi Dengan Membandingkan Algoritma Naïve Bayes, Support Vector Machine Dan K-Nearest Neighbor.” IT for Society 4(1). doi: 10.33021/itfs.v4i1.1181.

Hasibuan, Samuel. 2016. “Penerapan Sistem Fuzzy Untuk Prediksi Harga Kelapa Sawit.”

Krismawanti, Ika Ayu, Shantika Martha, and Naomi Nessyana Debataraja. 2019. “Pemodelan Autoregressive Fractionally Integrated Moving Average (ARFIMA) Dalam Memprediksi Harga Crude Palm Oil (CPO).” 08(4):721–28.

Nafi’iyah, Nur. 2016. “Perbandingan Regresi Linear , Backpropagation Dan Fuzzy Mamdani Dalam Prediksi Harga Emas.” Seminar Nasional Inovasi Dan Aplikasi Teknologi Di Industri 291–96.

Nafi’iyah, Nur. 2020. “Analisis Algoritma Backpropagation Dengan Svm Dalam Hasil Prediksi Nilai Ujian Nasional Pada Sekolah Tingkat Pertama.” INFORMATIKA. doi: 10.36723/juri.v12i1.204.

Rahayu, Dwi, Randy Cahya Wihandika, and Rizal Setya Perdana. 2018. “Implementasi Metode Backpropagation Untuk Klasifikasi Kenaikan Harga Minyak Kelapa Sawit.” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer.

Sukandy, Dwi Martha, Agung Triongko Basuki, and Shinta Puspasari. 2014. “Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Minyak Sawit Berdasarkan Data Persediaan Dan Jumlah Permintaan ( Studi Kasus Pt Perkebunan Mitra Ogan Baturaja ).” Program Studi Teknik Informatika.

Tundo, Tundo, and Shofwatul ’Uyun. 2020. “Penerapan Decision Tree J48 Dan Reptree Dalam Menentukan Prediksi Produksi Minyak Kelapa Sawit Menggunakan Metode Fuzzy Tsukamoto.” Jurnal Teknologi Informasi Dan Ilmu Komputer. doi: 10.25126/jtiik.2020731870.




DOI: http://dx.doi.org/10.30700/jst.v12i2.1071

Article Metrics

Abstract view : 489 times
PDF (Indonesian) - 301 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 SISFOTENIKA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Badan Pengelola Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (SISFOTENIKA) STMIK Pontianak.

 

Jurnal Ilmiah SISFOTENIKA terindex di :


   

   

  

    

    

    

   

 

 

 

ISSN Printed : 2087-7897

ISSN Online : 2460-5344


SERTIFIKAT PENGHARGAAN :

Jurnal Ilmiah SISFOTENIKA Terakreditasi Peringkat Empat

 

Partners & Co-Organizers:




Lisensi Creative Commons

Jurnal Ilmiah SISFOTENIKA: STMIK Pontianak Online Journal ISSN Printed (2087-7897) - ISSN Online (2460-5344) licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional. Flag Counter

View My Stats>